Pilot Biometrics ECG Waveform Captures

sdmay18-12

Team Members Ryan Gallus, Andrew Jones, Justin Bader, Zach Glanz, Kory Gray, David Kirpes

Advisor: Professor Tyagi Client: Rockwell Collins

Purpose

Provide critical **medical information** to decision makers about the condition of **US Navy pilots** during training missions

Project Overview

Capture, monitor, and analyze Electrocardiograph (ECG) waveform

- Three ECG Sensors take voltage readings
- Filtering remove interference noise
- Analog to Digital Converter (ADC) converts signals
- ECG waveform data fed into microcontroller
 - Copy stored on device (4-5 hours)
 - Copy packaged for output
 - Input into artificial neural network for stress detection
- Battery and voltage regulator for 4-5 hours operation

Operational Environment

- ECG sensors attached to user via disposable pads under flight suit
- Used inside military aircraft cockpit
 - Rough shaking
 - Inconsistent vibrations
 - Movements from pilot
 - Unpredictable muscle contractions
 - High-g maneuvers
- Pressurized cabin
- Reasonable range of temperatures and humidity

Intended Users

- US Navy fighter pilots in training
 - Pilots already certified to operate aircraft
 - \circ ~ In good health and physical condition
- Practicing missions with multiple aircraft
- Extracted data can be transmitted to ground in real time
- Data used by training and health officers
 - Determine whether or not to continue mission
 - Confirm if pilot is fit to continue training
 - Identify health issues early

ECG Waveform

- Captured using 3-Leads
- R-Wave
 - Used to detect Heart-Rate
 - Easy to capture
- QT Interval
 - \circ ~ Time from start of R-wave to the end of T-wave
 - Not as reliable to capture

Detecting Stress

- Heart-Rate Variability
 - Measure variability between R-waves
 - Easily Implemented with ECG
 - High variability is indicator of stress
- QT Interval
 - Measurement of QT intervals
 - Difficult to implement accurately
 - Decreased interval indicates stress

Hardware

- ADS1298R (Pictured)
 - 24-bit ADC
 - Built in hardware frequency filter
- Nucleo-144 (Pictured)
 - Used in place of permanent microcontroller
 - Communicates over SPI
- ECG Leads (Pictured)
- STM32F746G Discovery

Voltage Regulator & Battery

Voltage Regulator

Battery

Power Cord

Filters

Bandpass Filter

Offset Voltage

Notch Filter

Analog to Digital Converter

- 24-bit ADC
- Communication with microcontroller over SPI
- Operating at 8,000 samples-per-second
- Using 3 leads for ECG detection
 - Disposable ECG sensor pads placed on skin
 - Return voltage readings
- Challenges
 - Evaluation module PCB designed for 12-lead system.
 - Evaluation module designed to work with companion board that is only compatible with Windows XP-7

Microcontroller

SPI Interface with ADC

- ADC output written to board registers
- C++ application reads registers and directs data flow

STM32F746G Discovery Board

- Linux Development Environment
- Reconfigure u-boot and put uClinux on quad-SPI flash memory on board to boot
- Reconfigure uClinux image to use SPI and store to microSD card

Artificial Neural Network

Stress Detection

- Given a set of training data, will learn whether an individual is stressed or not
- Uses Heart Rate Variability as the metric to detect cognitive stress
 - Time domain measurement NN50
- Can tweek itself over time to with individual pilots

Data Collection

Control Data

- Measuring time between R-waves of user at rest
- Single task that is uncomplicated

Stressed Data

- Measuring time between R-waves of user doing mentally straining tasks until failure
- Starts with single spatial navigation task
- Additional cognitive tasks added until subject feels overly stressed

Testing

- Component Testing
 - Individually test hardware components
 - Test battery performance/lifetime and data storage requirements
- ECG Waveform Testing
 - Compare device output against sample ECG data
 - Test on multiple subjects for anomalies
- Artificial Neural Network Testing
 - Train with labeled data
 - Validate with test data and adjust weights for accuracy

