Pilot Biometrics - ECG Waveform Captures Ryan Gallus, Andrew Jones, Justin Bader, David Kirpes, Zach Glanz, Kory Gray Advisor: Professor Tyagi Client: Rockwell Collins

Introduction

Problem Statement

Develop a device that will capture, monitor, and analyze the ECG waveform of a military pilot in flight, to be used during training operations.

Solution

• Three high-fidelity sensors collect ECG

Relevant Standards

• IEEE 11073-10441

Design Requirements

Functional

- 4-5 hours of continuous operation
- Store 4-5 hours of operational data
- Communication with ground station
- Operate in real time on an ARM microcontroller

Non-Functional

- waveform
- Filter out background noise and interference
- Analyze waveform data to detect if the pilot is in distress
- Store encrypted data and package a copy for real-time transmission via component in cockpit

ECG Waveform Output

Design Approach

ECG

Sensor

System Block Diagram

Functional Modules

- Power Supply
- ECG Sensors
- Analog to Digital Converter
- Hardware Filtering
 - Notch

- (Cardiovascular Fitness Devices)
- IEEE 11073-10102 (Annotated ECG)

Battery

Voltage Regulator (5V)

Microcontroller

- No interference with pilot's primary tasks
- No interference with pilot's safety harness
- No interference with normal communication

Operating Environment

- Pilot's cockpit of a jet
- High amounts of vibrations and shaking
- Reasonable range of temperatures

Intended Users

- US Navy Pilots
- Monitor health during training missions
- **Engineering Constraints**
 - Multiple hardware components need power
 - Securely store large amounts of data
 - Difficult operational environment to simulate
 - Specific development environment required

- Software Filtering
- Detection Algorithm
- Data Storage
- Data Transmission

- Maximan Income

Testing

Strategy

- Gather control data
 - Baseline ECG readings
 - Test different conditions
- Simulate cognitive load on ground
 - Spatial navigation task
 - Increasingly difficult other tasks
- Operator Performance Lab

ECG Sensor Voltage Readings

System Functions

Technical Details

Microcontroller, ADC, and ECG Sensors

Hardware

- STM32F767 Microcontroller
- ADS1298RECGFE-PDK analog digital converter
- ECG sensor ADS129R

Microcontroller

- microC linux
- C

Software Modules

Artificial Neural Network

- Supervised machine learning algorithm
- Given a labeled training set of data, learns whether an individual is stressed or not
- Uses Heart Rate Variability as metric for detecting cognitive stress
- Can tweek itself over time as an individual changes to improve accuracy and work effectively in a variety of conditions